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A B S T R A C T

Measures of physical growth, such as weight and height have long been the predominant outcomes for moni-
toring child health and evaluating interventional outcomes in public health studies, including those that may
impact neurodevelopment. While physical growth generally reflects overall health and nutritional status, it lacks
sensitivity and specificity to brain growth and developing cognitive skills and abilities. Psychometric tools, e.g.,
the Bayley Scales of Infant and Toddler Development, may afford more direct assessment of cognitive devel-
opment but they require language translation, cultural adaptation, and population norming. Further, they are not
always reliable predictors of future outcomes when assessed within the first 12–18 months of a child’s life.
Neuroimaging may provide more objective, sensitive, and predictive measures of neurodevelopment but tools
such as magnetic resonance (MR) imaging are not readily available in many low and middle-income countries
(LMICs). MRI systems that operate at lower magnetic fields (< 100mT) may offer increased accessibility, but
their use for global health studies remains nascent. The UNITY project is envisaged as a global partnership to
advance neuroimaging in global health studies. Here we describe the UNITY project, its goals, methods, oper-
ating procedures, and expected outcomes in characterizing neurodevelopment in sub-Saharan Africa and South
Asia.

1. Introduction

Infancy and early childhood, from birth to 5 years of age, is a period
of rapid and dynamic brain and cognitive development, which lays a
foundation for future cognitive skills and abilities. On a macro
anatomical level, a child’s brain expands in volume by more than 300 %
across this period (Baribeau and Anagnostou, 2013), and is driven by the
developing tissue microstructure and fiber architecture (Stiles and Jer-
nigan, 2010). These microstructural changes include advancing white
and gray matter myelination (Brody et al., 1987) and changing neuronal
and synaptic density and organization (Houston et al., 2014). Collec-
tively, these processes contribute to the development of mature and
efficient functional brain networks (Miskovic et al., 2015; Faghiri et al.,
2018) that support emerging cognitive functions, skills, and behavioral
abilities (Luna et al., 2001; Peltzer-Karpf, 2012).

The rate and timing of developing neural systems are strongly shaped

by genetic and environmental factors (and their interactions) beginning
at the earliest stages of in-utero development and continuing across the
lifespan (Bedi and Bhide, 1988; Anjos et al., 2013; Bick and Nelson,
2016; Vohr et al., 2017; Shankar et al., 2018; Fitzgerald, Hor, and Drake,
2020; Shin et al., 2020). During pregnancy, aspects of maternal health
including malnutrition, infection(s), anemia, stress, depression, and fa-
tigue can alter fetal neurodevelopment and pre- and post-natal brain
connectivity via impaired neurogenesis, myelination, and other neuro-
developmental processes. Postnatally, functional brain systems depend
on the carefully orchestrated delivery of growth factors and micro- and
macro-nutrients (e.g., lipids, phospholipids, vitamins, and minerals) for
optimal development. Deficient intake of iron, folic acid, vitamins A, D,
K, B vitamins, choline, sphingolipids, and/or gangliosides can impair
developing brain systems with lasting cognitive and behavioral conse-
quences. In addition, environmental exposures to heavy metals, tobacco
smoke, alcohol and other controlled substances, air pollution, and poor
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water quality (including human waste and feces) can also impact neu-
rodevelopmental processes and brain development.

These exposures take place against a backdrop of demographic, so-
cioeconomic, and other social determinants of health that can buffer or
amplify their effects (Bedi and Bhide, 1988; Zhang et al., 2017; Kvar-
atskhelia, Rurua, and Vadachkoria, 2023; Zhou et al., 2023; Zugman
et al., 2023). For example, access to quality healthcare and/or educa-
tional opportunities, clean water and sanitation, and warm, supportive,
and attentive caregiving are all factors associated with beneficial neu-
rodevelopmental outcomes. Maternal and family adversity, limited
maternal autonomy, gender inequality, and other social and cultural
norms can also differentially impact neurodevelopment depending on
the child’s sex and gender (Shroff et al., 2009).

Within the context of global health, measures of child growth (or,
more specifically, growth faltering, e.g., stunting and wasting) are often
the yardsticks by which interventions are measured and evaluated.
Stunting, underweight status, and wasting are commonly defined as
length or height-for-age Z-score (LAZ or HAZ), weight-for-age Z-score
(WAZ), and weight-for-height Z-score (WHZ) less than − 2 (i.e., more
than 2 standard deviations below the mean), respectively. These and
other measures of physical growth, such as head circumference (HC),
and mid-upper-arm circumference (MUAC), are relatively quick and
easy to reliably measure with sufficient training, and provide a general
metric of child health and nutritional status (Tran et al., 2019). More-
over, they can be readily compared between children in different
geographical regions and countries and monitored longitudinally to
assess changes in population health (Vesel et al., 2019).

Based on measures of stunting and wasting, an estimated
170–250 million children worldwide under five years of age are failing
to reach their developmental potential (Black et al., 2008, 2013, 2017).
This number is also commonly cited as the number of children who may
be failing to reach their neurodevelopmental potential. However, given
the limited association between physical growth and cognitive devel-
opment and outcomes - relationships that can vary by environmental
setting (Tran et al., 2019), the true burden of unattained neuro-
development potential may be significantly higher (McCoy et al., 2016).
While some of the same health and environmental factors that lead to
stunting and/or wasting (e.g., malnutrition, nutritional deficiencies,
environmental stress, and early disease and illness) also impact neuro-
development (Nicolaou et al., 2020), physical growth accounts for only
a small portion of the variance in cognitive performance (Tran et al.,
2019). Further, interventions aimed at improving physical growth may
have little impact on cognitive development, and, vice versa, in-
terventions targeting neurodevelopment may not necessarily improve
physical growth (Walker et al., 2006; Sokolovic et al., 2014). Thus, a
more objective and direct measure of neurodevelopment may be war-
ranted for the evaluation of interventions that are primarily directed
toward neurodevelopmental outcomes.

Psychometric tools, including observational (e.g., the Bayley Scales
of Infant and Toddler Development, BSID (Balasundaram and Avula-
kunta, 2023)) and parent-reported measures (e.g., the Ages and Stages
Questionnaire, ASQ (Squires and Bricker, 2009) offer a more direct
assessment of a child’s current cognitive and developmental status.
Whilst many of these clinical tools are internationally recognized and
have been validated across multiple contexts, they come with important
caveats that may diminish their utility in some settings or as stand-alone
measures. For use in many lower- and middle-income settings, these
tools require language and cultural translation and population norming,
particularly for use in multi-country comparisons of outcomes. Ongoing
assessor training is also needed to ensure the validity and consistency of
derived measures. More importantly, however, assessed performance
within the first 12–18 months of a child’s life (corresponding to an
important window of opportunity for intervention) is modestly associ-
ated with outcomes measured in later childhood (i.e., general intelli-
gence or executive function skills at age 5 or 6 years) depending on the
tool (Anderson and Burnett, 2017; Schonhaut et al., 2020; Mansson

et al., 2021). Thus, while psychometric measures are an important tool
for directly assessing neurodevelopment that can be used up to a
population-level scale, they are not without challenges. In recognition of
these challenges, neuroimaging tools have been examined as potential
objective measures of underlying neurobiological mechanisms. These
tools may better relate to neurodevelopmental outcomes and may
complement traditional psychometric measures in assessing and evalu-
ating intervention outcomes.

Neuroimaging methods, such as magnetic resonance imaging (MRI)
and electrophysiology (electroencephalography, EEG) allow visualiza-
tion and/or quantification of emerging brain structure and function,
which may be an objective measure of brain maturation that is predic-
tive of current and future cognitive abilities and performance. In addi-
tion to broad metrics of brain macrostructure and organization (e.g.,
total brain and regional tissue volumes), MRI allows the characteriza-
tion of microstructural tissue organization, architecture, chemical
composition, structural and functional connectivity, cellular meta-
bolism, and brain physiology (e.g., blood flow). Many of these measures
collected in infancy, and even in utero, are predictive of later childhood
cognitive and academic skills (Thomason et al., 2018; Bugada, Kline,
and Parikh, 2021; Yu et al., 2021), and are sensitive to the impact of
nutritional deficiencies, adversity, stimulation, and other environmental
factors (e.g., water cleanliness and air quality, sanitation and open
defecation) (Sizonenko et al., 2013; McCarthy-Jones et al., 2018;
Mackes et al., 2020). However, while brain imaging does not require
cultural or language translation and may be sensitive to neuro-
developmental differences associated with cultural context and the so-
cial environment, even the most portable and user-friendly
neuroimaging methods are inherently limited in scalability.

Unfortunately, MRI systems that operate at high magnetic field
strengths (e.g., 1.5 Tesla and above) require significant infrastructure
and service support. This includes dedicated facilities, trained
personnel, and ongoing service (e.g., helium refills, maintenance, and
replacement of gradient and radio frequency hardware) that are
expensive and difficult to procure in LMIC settings. An estimated 40 % of
imaging equipment in low and middle income (LMIC) settings is unused
due to the lack of service and parts availability. These factors have
limited accessibility to MRI in LMIC geographies. For example, while the
US has nearly one MRI scanner per 25,000 inhabitants, India and other
countries in Southeast Asia and Sub-Saharan Africa may have fewer than
one per 1.25 million (Ogbole et al., 2018). While alternative imaging
methods such as EEG, and functional near-infrared spectroscopy (fNIRS)
are more portable and less infrastructure-intensive, they still require
significant personnel expertise for data acquisition and analysis.

As a consequence of this sparse availability, the collective knowledge
of early anatomical neurodevelopment in children from LMIC settings is
limited, and the potential utility of MRI as a tool in global health remains
unclear. Only a handful of MRI neuroimaging studies have been per-
formed outside of the ‘global north’ as highlighted by recent ‘growth
curve’ analyses of life-course patterns of brain development (Bethlehem
et al., 2022; Rutherford et al., 2022; Ge et al., 2024). Less than 3 % of the
contributed data came from a low or middle-income setting, and even
less from the early life period beyond the neonatal period. Thus, while
research from the North America, Europe, and Australia has shown the
short and long-term effects of early childhood infection and disease,
malnutrition, and other environmental adversities, the impact of these
factors in children who live in LMIC settings, where these influences are
far more common, is not yet well understood.

MRI systems that operate at lower magnetic fields (< 100mT) can
overcome many of the obstacles that challenge access to conventional
1.5 and 3 Tesla (T) scanners (Sarracanie et al., 2015). In addition to the
initial lower purchase cost (~$200–400,000USD vs. $1.5–4 million),
low and ultra-low field systems are more portable and require signifi-
cantly less power (about the same as a common kitchen appliance). This
makes them potentially more suitable for settings that lack reliable
power grids or where power may only be possible through solar or wind
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generators. They also have a small magnetic fringe field (extending less
than 6 feet in diameter), which makes them suitable for locations with
limited infrastructure or that cannot afford to dedicate large rooms with
magnetic and radio frequency shielding. Low and ultra-low field MRI
(LF-MRI) systems also produce less acoustic noise than most high-field
systems, allowing them to be integrated into clinical wards or research
centers without additional noise derating or magnetic and radio fre-
quency (RF)-shielding materials. Current commercially available sys-
tems, such as the Hyperfine Swoop, offer mobility, have small physical
footprints, and do not require substantial operator expertise.

Given these attributes, LF-MRI may be an important and comple-
mentary tool for assessing neuroanatomy change and neuro-
development in a global health context in LMIC settings. However, as
many current low-field systems have been optimized for clinical appli-
cations in higher resource settings and hospitals, their utility for public
health research, particularly in the early infant and childhood periods, is
not clear but holds promising potential. While some of the first in vivo
human MR images were acquired at field strengths much less than
100mT (e.g., Richard Damadian’s “Indomitable” operated at 50mT and
the scanner of John Mallard and his group in Aberdeen, Scotland had a
field strength of 40mT), systems less than 0.5 T were gradually replaced
by higher field (1.5 T, 3 T, and above) systems in clinical and research
settings through the 1980s and 1990s. However, continued exploration
and development of low and ultra-low field strength MRI continued in
research laboratories, with ongoing advancements in design, acquisi-
tion, and reconstruction methods. The commercialization of ultra low-
field systems by Hyperfine in 2020 has rekindled interest in their use
for in vivo human imaging, as seen in the steady increase in clinical use
publications. A literature review for “low-Field”, “MRI”, “Human” and
manually excluding field strengths of more than 100mT and strictly
engineering papers yields 17 publications in 2023 and 2024 vs. less than
5 from 2018 to 2022). Despite this, low-field systems remain in the
minority and lack the repertoire of imaging methods available on
higher-field strength systems. To date, low field systems have only
sporadically been used in neonatal and pediatric populations (Deoni
et al., 2021; Cawley, Nosarti, and Edwards, 2022; Cawley et al., 2023;
Sabir et al., 2023; Tu et al., 2023), or LMIC settings, and no large-scale
studies in either HIC or LMIC settings have explored their use for clinical
or neuroscience research.

The UNITY Project (Ultra low-field Neuroimaging In The Young) is

an ambitious multi-national and multi-institutional project aimed to
accelerate development and deployment of ultra-low field MRI as an
accessible neuroimaging modality, specifically for structural (volu-
metric, relaxometry, magnetization transfer, and diffusion imaging) and
metabolic (lactate and perfusion) imaging of the brain. As a partnership
between clinical, academic, and industrial researchers in high and
lower-resource settings the primary goal of UNITY is to demonstrate the
ability of LF-MRI to provide objective metrics of brain development that
are predictive of current and future cognitive abilities; and sensitive and
responsive to maternal and infant health interventions (Fig. 1).

To achieve this ambitious goal, UNITY comprises five central
research focus areas: 1. MRI physics development, including the devel-
opment, optimization, and testing of anatomical and volumetric imag-
ing, as well as methods sensitive to tissue microstructure and
myelination in neonates, infants, and young children (but also appli-
cable across the lifespan and for clinical decision making); 2. MR Image
Analysis and Quality Improvement, including the development of arti-
ficial intelligence (AI) methods to improve image quality and the
advancement of analytic methods (e.g., skull stripping, tissue segmen-
tation, image normalization, and alignment) customized for pediatric
populations and the unique contrast of LF-MRI images; 3. Data sharing
and harmonization, including the use of quantitative phantoms and
quality control and assurance protocols to help ensure inter-site and
longitudinal intra-site data consistency; 4. Academic neuroimaging ca-
pacity building, including image analysis training, development of
platforms for data sharing and shared analysis, and the formation and
integration into local, regional, national, and international academic
societies (e.g., national radiological societies, the International Society
for Magnetic Resonance in Medicine, ISMRM); and 5. Clinical training
and capacity building, including the development of training modules
and the use of cloud-based platforms for radiological reading and
interpretation (e.g., CollectiveMinds Radiology).

Research outcomes from these focal areas will optimize data
collection in ongoing observational studies and clinical trials located
across Sub-Saharan Africa (Ghana, Ethiopia, Kenya, Uganda, Malawi,
Zambia, and South Africa) and South Asia (Pakistan, India, and
Bangladesh) to help characterize patterns of brain development across
these diverse populations and associated with differences in prenatal
exposures, birth outcomes, nutritional status, social equality, and soci-
odemographic characteristics. These patterns will then be used to

Fig. 1. The UNITY project aims to identify sensitive, responsive, and predictive measures of maturing brain structure and function by characterizing patterns of
neurodevelopment across a large and diverse meta-cohort of children. To achieve this aim, the GlobalMap project includes 5 areas or ‘pillars’ of focus: 1. MRI physics
and engineering to develop and optimize novel acquisition methods tailored for low-field MRI; 2. Data and analysis method sharing; 3. Data harmonization through
shared protocols, phantoms, and rigorous QA/QC protocols; 4. Capacity building in low-field pediatric neuroimaging through site-by-site training of research and
clinical personnel on patient handling, data acquisition, and data analysis; and 5. Capacity building in MRI physics and low-field MR image interpretation.
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identify sensitive and predictive brain imaging metrics, and to help
identify global and regional factors that influence developmental
outcomes.

In this paper, we describe the organizational structure of UNITY, its
goals, methods, and operating procedures, which we hope will provide a
basis for shared large-scale epidemiological studies of neuro-
development in HIC and LMIC settings.

2. METHODS

2.1. UNITY Project Overview

UNITY brings together academic researchers in MRI physics, engi-
neering, computer science, and image analysis with clinical scientists,
public health researchers, community action groups, and non-profit
organizations located in high-resource countries (Australia, Canada,
Germany, Sweden, the Netherlands, USA, and UK) and LMICs
(Bangladesh, Ethiopia, Ghana, India, Kenya, Malawi, Pakistan, South
Africa, Uganda, and Zambia). To date, 30 64mT Hyperfine Swoop MRI
systems (Hyperfine.io, Guilford, CT) have been delivered and installed
across a number of academic/research and clinical/hospital sites
(Table 1, Fig. 2) in HIC and LMIC settings. A further 20 are planned by
the end of 2024 to additional clinical sites in the current list of LMICs as
well as Botswana, Guatemala, Zimbabwe, and others.

In addition to the data collection (clinical partners) and physics and
engineering sites, the UNITY project also includes analytical hubs for
data analysis and neuromodeling, clinical and research capacity-
building centers, and industrial partners (Hyperfine, Flywheel, Collec-
tiveMinds Radiology, and CaliberMRI) spread across high and lower
income settings (Fig. 2).

2.1.1. Project Governance & Guiding Principles
The structural organization of UNITY comprises an integrated

network of partners comprising: 1. Clinical partners and data collection
sites that have integrated LF-MRI alongside neurocognitive assessments
into ongoing clinical trials and observational studies; 2. Physics and
engineering sites focused on the development of LF-MRI pulse sequences
and imaging methods driven by the needs of the clinical partners; 3.
Image analysis and neuromodeling hubs to develop novel image analysis
methods (e.g., segmentation, registration) and machine learning
methods for improving image quality; and 4. International academic and
clinical societies to foster local, regional, and international commu-
nities, knowledge transfer, and capacity building (Fig. 3). Each of these
components is discussed further below.

As a network structure, each clinical study site (CSS) of UNITY has its
own unique site-specific structure, objectives, and outcomes. However,
across the network of sites, care has been taken to align and harmonize
specific data collection elements, including the neurocognitive assess-
ments, neuroimaging protocol, and ideal neuro-related data collection
timepoints. The physics and engineering (P&E) aspects of UNITY are
coordinated from King’s College, London, and are driven by the research
focus and needs of the CSSs. The P&E team also receives input from the
image analysis and neuromodeling hubs (IAN) concerning image spatial
resolution, signal- and contrast-to-noise, and other image quality char-
acteristics that are needed for their modeling efforts. The IAN is also
driven by the needs and desired outcomes of the CSSs. The individual
CSSs are coordinated through individual grants from the Bill &Melinda
Gates Foundation (BMGF), which acts as an independent monitor and
assists with integration of harmonized neuroimaging protocols across
sites. Whilst not directly involved in the research activities at each site,
BMGF helps facilitate and maintain communication across them and
with the P&E and IAN hubs.

2.2. Brief descriptions of clinical partner sites

UNITY builds upon and feeds into a unique foundation of LF-MRI

Table 1
List of current contributing UNITY research and clinical sites.

Hospital or
Research Center

City, Country Site PI

Physics &
Engineering
Sites

University of British
Columbia

Vancouver, BC,
Canada

Shannon Kolind

University of
Wisconsin, Madison

Madison,
Wisconsin, USA

Douglas Dean
III

National Institutes of
Health

Washington,
DC, USA

Peter Basser

Rhode Island Hospital Providence, RI,
USA

Viren D’Sa

Centre for
Neuroimaging
Sciences, King’s
College London

London, UK Steven Wiliams

St. Thomas Hospital,
King’s College
London

London, UK Jo Hanjal

CUBRIC Centre,
Cardiff University

Cardiff, UK Derek Jones

Leiden University Leiden, The
Netherlands

Andrew Webb

Lund University Lund, Sweden Emil Ljungberg
University of Bonn Bonn, Germany Hemmen Sabir
Max Plank Institute
for Biological
Cybernetics

Tubingen,
Germany

Klaus Scheffler

Data Analysis
Sites (Scanners
not Provided)

Children’s Hospital
Los Angeles

Los Angeles, CA,
USA

Natasha Lepore

Children’s National
Hospital

Washington,
DC, USA

Marius
Linguraru

Murdoch Children’s
Research Institute

Melbourne,
Australia

Marc Seal

Clinical &
Observational
Study Sites

University of Cape
Town

Cape Town,
South Africa

Kirsten Donald

Kalafong Hospital Pretoria, South
Africa

Michael Pepper
& Khomotso
Masemola

Chris Hani
Baragwanath
Academic Hospital

Johannesburg,
South Africa

Michael
Pepper,
Sithembiso
Velaphi &
Firdose Nakwa

Tygerberg Academic
Hospital,
Stellenbosch
University

Cape Town,
South Africa

Cilla Springer

Makerere University
& Kawempe Referral
Hospital

Kampala,
Uganda

Victoria
Nankabirwa

Women and
Newborns Hospital,
University Teaching
Hospital

Lusaka, Zambia Bridget Spelke

Training & Research
Unit of Excellence
(TRUE)

Zomba, Malawi Kamija Phiri

Korle-Bu Teaching
Hospital,

Accra, Ghana Method Tuuli

Kintampo Health
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neuroimaging data collected from large and diverse study populations
across Sub-Saharan Africa and Southern Asia. Sites include a mixture of
research, primary, and tertiary care centers, and span major clinical (e.
g., Aga Khan University Hospital) and community health research cen-
ters (e.g., the Community Empowerment Lab). Whilst some of the larger
clinical centers already have access to clinical neuroimaging systems,
including 0.3–3 T MRI, neuroimaging research is nascent. In the smaller
regional hospitals, as with the research facilities, radiological expertise
is, at best, severely restricted (and often limited to X-ray and computed
tomography, CT). This collection of sites encompasses a catchment area
of more than 50 million families living in rural villages, urban slums,
informal settlements, as well as upper-scale urban housing.

Felege Hiwot Comprehensive Specialized Hospital & Addis Conti-
nental Institute of Public Health, Bahir Dar (Ethiopia). The Bahir Dar
Site is based at the Felege Hiwot Comprehensive Specialized Hospital
and the study is organized through and led by Addis Continental Insti-
tute of Public Health (ACIPH). ACIPH is a center of excellence in Africa,

focused on training and research in public health. ACIPH has worked
with governmental and international organizations and academic in-
stitutions to firmly link the training of public health to practice and
empirical research. The neurodevelopment study is a collaboration be-
tween ACIPH and the Brigham and Women’s Hospital/Harvard Medical
School. The Felege Hiwot Hospital is a tertiary-level referral public
hospital. Currently, more than 10 radiography technologists, 4 radiol-
ogists, and 3 biomedical engineers trained in the Hyperfine systems are
operating the machine, interpreting results, and providing preventive
maintenance. The radiology department within the 448-bed hospital
also houses two X-Ray systems and one CT scanner. The Bahir Dar Site
will conduct two studies. The first is a prospective accelerated longitu-
dinal study to characterize typical healthy neurodevelopment in the first
5 years of life in a cohort of children from Bahir Dar city. In a second
cohort, ACIPH will follow up infants from a pregnancy intervention
study, the Enhancing Nutrition and Antenatal Infection Treatment
study, and will examine the effects of prenatal interventions to optimize

Fig. 2. Research sites that comprise the UNITY network include data collection and clinical partner sites (blue), physics and engineering development groups
(orange), neuromodeling and analysis groups (pink), and education and clinical capacity groups (red). Black dots correspond to two sites in close proximity.

Fig. 3. General flow of knowledge and interaction between the main UNITY network components.
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maternal nutrition and infection management in pregnancy on longer-
term child neurodevelopment. The average salary of individuals
served by the hospital is ~4500 Birr ($80 USD)/month.

Aga Khan University Hospital (Pakistan) is the main teaching hos-
pital for Aga Khan University (AKU) and is located in Karachi, Pakistan.
AKUH is renowned for its comprehensive healthcare services, research,
and educational programs, with a particular focus on maternal and child
health. AKUH receives patients from primary healthcare clinics (PHCs)
in the peri-urban coastal regions of the city. The PHCs are maintained by
the Department of Pediatrics and Child Health at AKU and have quar-
terly household surveillance for key maternal and child health indicators
along with antenatal care, immunization, and physician services for
children under the age of 5 years. These sites are part of AKUH’s broader
commitment to addressing healthcare disparities and improving
maternal and child health outcomes in underserved communities. They
serve as essential hubs for healthcare delivery, research, and community
engagement to promote the well-being of mothers and children in these
areas. AKU is involved in a large-scale pregnancy risk and surveillance
study (PRiSMA), which will follow children born to both healthy and
anemic mothers. In addition to two Hyperfine Swoop systems (one
located at the hospital and the second at a remote community PHC), the
Department of Radiology at AKUH has 1.5 and 3 Tesla MRI scanners, a
CT scanner, and 2 X-Ray systems, with 40 radiologists available on-site.
Approximate average income for the serviced population is 100,000
PKR ($360 USD)/month.

Cape Town University, Cape Town (South Africa). The University of
Cape Town (UCT) is a recognized centre of excellence with world-class
research facilities including the Neuroscience Institute (NI). The UCT NI
aims to build a global network addressing the brain-health priorities and
challenges faced by the populations it serves through advancing
research, training, and advocacy. The overarching research strategy is
based on two conceptual domains, namely brain development across the
lifespan and brain injuries. This site is home to an interdisciplinary team
of researchers and clinicians, a network of collaborative projects, and
state-of-the-art equipment and technology including a partnership with
the Cape Universities Body Imaging Centre (CUBIC; http://www.cubic.
uct.ac.za). CUBIC houses both a 3 T Siemens Skyra MRI as well as the
Hyperfine Swoop scanner. The UCT team is championing cross-
validation work across both MRI systems. This work is embedded
within multi-modal pediatric research projects across several longitu-
dinal birth cohort studies based in Gugulethu and other peri-urban re-
gions of the Cape Town metropole. These high-risk communities are
representative of many South African communities, with a high preva-
lence of maternal depression, childhood malnutrition, HIV exposure,
exposure to violence, alcohol and drug use, and infectious diseases.

Christian Medical College (CMC), Vellore (India) is one of the pre-
mier teaching hospitals in India and has been in the forefront of primary
to quaternary care services in the country for more than a century. The
private non-profit hospital has ~3700 inpatient beds across its seven
campuses with approximately 10,500 outpatients per day. The hospital
serves a broad community, including individuals from across India,
Bangladesh, Srilanka, Maldives, Nepal, Bhutan, the Middle East, and
central Africa. In addition to the Hyperfine Swoop, the hospital has
access to 3 T MRI and high-resolution CT (with approx. 60,000 MRI and
70,000 CT scans performed per year). The radiology department consists
of 100 radiologists and 150 radiographers, technicians, and other sup-
port staff. The child development research team is involved in the
community with other institutional community teams in both urban and
rural Vellore in a participatory and complementary model. CMC Vellore
is involved in a large-scale pregnancy risk and surveillance study
(PRiSMA), which will follow children born to healthy and anemic
mothers. The average salary in the region is 31,000 INR ($372 USD)/
month.

Community Empowerment Laboratory, Lucknow (India) is a
community-entrenched global health research and innovation organi-
zation with more than two decades of experience in enacting and driving

meaningful community-driven change in the health and survival of In-
dia’s children. The team is internationally recognized for its work in
fostering and promoting kangaroo mothering care and other critical
domains of maternal and newborn survival. The team has experience
with onsite neurocognitive assessments and functional near-infrared
spectroscopy (fNRIS) (Wijeakumar et al., 2019; Spencer et al., 2023),
and has access to a high-field 3 T Philips Allegra scanner in Lucknow in
addition to the LF-MRI Hyperfine Swoop that is located at the main
research building in Shivgarh, a rural block in the Rae Bareli district,
Uttar Pradesh, India. The site will conduct a large-scale longitudinal
study focused on the impact of early mother ‘kangaroo’ care and
breastfeeding. The mean salary in the region is 4200 INR ($50
USD)/month

Iccdr,b Dhaka (Bangladesh) The International Centre for Diarrheal
Disease Research, Bangladesh (icddr,b) is a large multi-disciplinary in-
ternational and national scientific research site that includes a main
hospital campus as well as affiliated satellite sites, e.g., an urban site
(Mirpur). Two Hyperfine Swoop systems have been delivered to the
main campus and one satellite site with Dhaka, complement an existing
1.5 T MRI system and 128-channel research-dedicated EEG system. The
sites will engage in pediatric research related to early child care and
advancing women’s economic empowerment and labour force involve-
ment. Average salary of participants enrolled in ongoing studies is
approx. 26,000 BDT ($235 USD)/month.

Jaramogi Oginga Odinga Teaching & Referral Hospital, Kisumu
(Kenya). The Kenya site of the Pregnancy Risk Stratification Innovation
and Measurement Alliance (PRiSMA) MNH study is led by the Kenya
Medical Research Institute (KEMRI)-Centre for Global Health Research
(KEMRI-CGHR) in collaboration with the United States Centre for Dis-
ease Control (CDC), Kisumu County Department of Health, and Siaya
County Department of Health, in western Kenya. Participants are drawn
from two Health and Demographic Surveillance System (HDSS) areas,
located in western Kenya: (1) a rural district, Siaya County; (2) An urban
area of Kisumu County. The scanner is hosted at Jaramogi Oginga
Odinga Teaching & Referral Hospital (JOOTRH). JOOTRH is located in
Kisumu City and is the main referral hospital for over 7 million residents
of 10 counties in western Kenya. The site is involved in a large-scale
pregnancy risk and surveillance study (PRiSMA), which will follow
children born to healthy and anemic mothers. Average Salary in the area
is approximately 35,000 Kenyan Shilling ($265 USD)/month.

Kintampo Health Research Centre (KHRC), Kintampo (Ghana) KHRC
area includes communities of nine adjoining districts in the Bono East
Region of Ghana. The total resident population of the research area is
about 600,000 and approximately 30,000 pregnancies are identified and
recorded by KHRC each year. This is one of the largest populations
involved in continual research surveillance in sub-Saharan Africa. KHRC
works collaboratively with the Kintampo Municipal Hospital, therefore
has access to MRI (1.5 T) and EEG equipment in addition to the on-site
Hyperfine Swoop. KHRC is involved in a large-scale pregnancy risk and
surveillance study (PRiSMA), which will follow children born to healthy
and anemic mothers. Average salary in the region is approx. 1500
Ghanian Cedis ($113 USD)/month.

Korle-Bu Teaching Hospital, Accra (Ghana). The Korle-Bu Teaching
hospital is the largest academic medical center and the largest public
hospital in Ghana, with 2000 beds. In addition to the Hyperfine Swoop
scanner, the clinical radiology department operates a 1.5 T Toshiba
Vantage MRI scanner, two CT scanners and four X-Ray (including a
mobile unit) systems. There are currently eight Specialist and five Senior
Specialist Radiologists at the hospital. The Hyperfine system will be used
as part of a longitudinal follow-up study assessing structural brain
development and function in children from birth to 12 months,
including the potential impact of maternal and infant anemia. Average
salary within the area is approx. 2000 Ghanian Cedi ($150 USD)/month.

Makerere University & Kawempe Referral Hospital (KRH), Kampala
(Uganda) The school of public health at Makerere university (MakSPH)
is part of the Makerere university college of health sciences. The
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university is one of the oldest in Africa (established in 1922) and is
recognized as a leading academic and research institution in Sub-
Saharan Africa. The research site is located at the Kawempe national
referral hospital (KNRH), a public tertiary hospital in urban Kampala,
Uganda. Kawempe National Referral Hospital has one radiologist and
nine radiographers. The hospital has an X-ray machine and a CT scan
machine but no access to MRI. The hospital has a capacity of 200 beds
and manages a considerable workload, delivering an average of 65 ba-
bies per day. A second study site, at the Ndejje Health Center IV, oper-
ates at a lower level within the Ugandan healthcare system and has no
resident radiologist. In addition, the health center has no X-ray, CT, or
MRI. Two Hyperfine Swoop systems have been delivered to each study
site. The systems will be used to investigate longitudinal brain devel-
opment in healthy children from 0 to 5 years of age, as well as in low-
birth weight infants and the impact of early nutritional supplementa-
tion (Flaherman et al., 2023). Both institutions primarily serve
low-income communities, with average salaries of approx. 250,000 UGX
($65 USD)/month.

University of Stellenbosch, Stellenbosch (South Africa). The research
site is located at Tygerberg Hospital, Parow, Cape Town. Tygerberg is
the largest hospital in the Western Cape and acts as a teaching hospital in
conjunction with the University of Stellenbosch’s Health Science Fac-
ulty. The research unit includes two assessment rooms, a neurophysi-
ology laboratory (EEG and eye-tracking) and a neuroimaging room
where the Hyperfine Swoop is situated. The current, Biomarkers of
Neurodevelopmental Outcomes Study (BONO) aims to assess the
cognitive, socioemotional, neurodevelopmental and general health
outcomes in up to 2000 children (aged 6–17 years) from surrounding
communities. Our participants are from two surrounding lower socio-
economic residential areas and their mean monthly income in 2019
(feasibility study) was ZAR 5883 ($370 USD)/month.

University of Pretoria (South Africa). The LF-MRI units for the
Neonatal Encephalopathy with Suspected Hypoxic Ischaemic Encepha-
lopathy (NESHIE) study have been placed at Kalafong (University of
Pretoria) and Chris Hani Baragwanath Academic Hospital (CHBAH;
University of the Witwatersrand). Both sites are based in the Gauteng
province of South Africa and are tertiary level state hospitals with
limited access to 1.5 T MRI scanners (namely Phillips and GE MRI
scanners at Kalafong and CHBAH, respectively) as well as CT, PET, ul-
trasound, and X-Ray facilities. Together, the ~1100 and ~3200-bed
public hospitals have 64 and 185-bed neonatal unites, respectively. The
radiology department at Kalafong has four radiology consultants and
four registrars, whilst CHBAH has thirteen radiology consultants and
twenty-three rotating registrars. The Hyperfine Swoops systems at the
two hospitals will be used as part of a study of neonatal encephalopathy
with suspected hypoxic ischaemic encephalopathy (NESHIE), specif-
ically as a means through which point-of-care proximal imaging bio-
markers can be determined in moderate-to-severe term (GA ≥ 36 weeks)
NESHIE neonates. The LF-MRI component of the NESHIE study has been
actively enrolling patients since November 2021 and involves
comparing same-day LF-MRI and 1.5 T MR images from babies with
moderate-severe NESHIE. Average salary of individuals served by both
Kalafong and CHBAH is less than 5000 Zar ($265 USD)/month.

University Teaching Hospital, Lusaka (Zambia). The University
Teaching Hospital (UTH) is the principal medical training institution for
the University of Zambia. Post-graduate physician training is available
in the Departments of Anesthesia, Internal Medicine, Obstetrics and
Gynecology, Pediatrics, Surgery, and Pathology. UTH is a public hospital
with approximately 2000 beds, 21 operating rooms, and 10 ventilator-
accessible intensive care unit beds. It provides a full range of primary,
secondary, and tertiary health and medical services on both an inpatient
and outpatient basis. In addition, it serves as the country’s specialist
centre receiving referrals from all over Zambia. Specialty services at
UTH include internal medicine subspecialties (i.e., infectious disease,
cardiology, gastroenterology), neonatology, orthopedics, urology,
transplant medicine, pediatric surgery, radiology (CT capabilities),

physical therapy, and prosthesis fitting and production. In addition to
the Hyperfine Swoop, Imaging services include: CT, plain radiography,
DEXA scan, ultrasound/echo, and fluoroscopy. There are currently 2
radiologists (physicians) with16 radiographers and 28 radiography
technicians. UTH is involved in a large-scale pregnancy risk and sur-
veillance study (PRiSMA), which will follow children born to healthy
and anemic mothers. Average income for the population in Lusaka is
$231 USD/month.

Zomba Central Hospital (ZCH), Zomba (Malawi) The Training and
Research Unit of Excellence (TRUE) in Zomba, Malawi, is a research
institution with over 14-year track record of local and international
collaborative research. Focused on infectious diseases, malaria, and
nutrition, it operates within the Zomba Central Hospital complex, which
serves a population of approximately 4.5 million in the southeastern
region, 70 km from Blantyre. TRUE’s research has yielded innovative
health solutions, including those addressing early-life risks like anemia
and malaria, incorporated into WHO guidelines. The site focuses on
maternal and child health, maintaining a birth cohort of about 5000
children under 5. The Hyperfine Swoop system is located at ZCH and is
integrated into a number of ongoing maternal and child health studies.
Average salary of participants in the area is less than 10,000 Malawian
Kwacha ($6 USD)/month.

Cohorts across the included study sites (Table 2) encompass both
healthy full-term infants, as well as those born with adverse birth out-
comes (including preterm delivery, small-for-gestational-age, and
hypoxic-ischemic encephalopathy), maternal and child diet and nutri-
tion status (specifically maternal prenatal anemia), socioeconomic and
environmental adversities, and differing gender and social norms and
equality. The expected meta-cohort aims for more than 10,000 mother-
child dyads with neuroimaging performed at multiple time points
throughout the first year of life (typically at 3, 6, and 12 months of age),
and then less frequently (biannually or annually) from 1 to 5 years of age
and older.

Individually, analysis of cohort-specific data will provide important
insight into the use of low-field MRI in understanding the neurological
impact of specific conditions, nutritional deficiencies, and environ-
mental adversities and evaluating potential therapeutic interventions.
Collectively, data integrated from all cohorts will also provide new
insight into ‘neurotypical’ development from birth through age 5 years
across these geographies, as well as allow examination of how regional
and geographical differences in health and environmental factors
prevalent in lower resource “global south” settings affect
neurodevelopment.

2.3. Site setup and staff training

2.3.1. Import and shipping of the hyperfine swoop into LMIC settings
The Hyperfine Swoop LF-MRI system (operating at 64mT) is FDA

510k cleared for brain imaging for all ages. The Swoop was chosen for
this project due to its portability, ease of installation and use, limited
infrastructure requirements (e.g. no cryogens), and immediate com-
mercial availability at scale. Whilst many of the procedures are novel
and undergoing continuous improvement, the protocols developed as
part of the UNITY project will inform a broad range of future ultra-low-
field neuroimaging studies.

Importing the systems into each country presented unique regulatory
challenges from various governmental agencies (Health, Energy, and
Economic Development). For study sites located in LMICs, PATH, a
global health non-profit, worked closely with Flexport (flexport.com),
the logistics provider, to navigate local regulatory and import re-
quirements to facilitate delivery of the MRI systems. In the absence of a
uniform regulatory regime, each country’s regulatory procedures were
unique and required a novel approach to facilitate delivery of the device
to the respective study sites. Common challenges included attaining
import tax waivers, managing conflicting or inconsistent application of
regulations, and optimizing delivery strategies.
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Given the cost of the Hyperfine Swoop device, some value added tax
(VAT) and importation taxes in certain geographies had the potential to
place an undue financial burden on the project. Most countries, how-
ever, would provide waivers and/or tax exemptions predicated on the
nature of the device, its intended use, and/or ownership status. Letters of
‘donation’ (Botswana, Ghana) or ‘transfer of ownership’ (Ethiopia,
Malawi, Zambia), for example, were often sufficient, or providing evi-
dence that the device was intended for scientific purposes, helped
reduce or eliminate the tax exposure.

Conflicting regulation, or the engagement of other local agencies,
was also experienced. The local regulatory agency of South Africa,
SAHPRA, asked for completed forms from the Medical Device Unit and
the Radiation Control Unit, in addition to licensing requirements for
import, import of an electromagnetic device, and use of an electro-
magnetic device. The former required EC certificate and EC declaration
of conformity, while the latter did not, as the two were operating under
the requirements of two national laws that were not harmonized. An
exemption letter had to be obtained from the Ministry of Health in order
to move forward. In Ghana, the team had to engage with the Nuclear
Regulatory Authority for an import permit (including completing and
submitting a “Notification of radioactive material transport” and an
application to “Authorize the registration to use radiological materials)
despite the device – like all MRI systems – not containing radiological
materials.

The cost to deliver the MRI systems by air freight was significantly
higher than by sea. Though the transit time was longer and more likely

subject to delays, cargo ships facilitated in-country delivery for most
study sites. Study sites in landlocked countries, such as Ethiopia,
Malawi, and Zambia, made use of air freight, whereas Botswana
received their device via land from South Africa. In each instance, local
logistics partners and hospital coordinators were instrumental in the
successful allocation of MRI systems to the respective study sites. Final
mile delivery logistics relied on close attention to details including
securing the availability of pallet jacks/forklifts during delivery, iden-
tifying a location where the crate will be unloaded, and walking the
delivery pathway to avoid narrow door widths, inclines, uneven areas,
and gradients greater than 5 degrees.

2.3.2. Ongoing service and support for the swoop scanner
An important aspect of UNITY is the sustainability of the imaging

systems, specifically with respect to ongoing service maintenance, re-
pairs, and software updates. This has traditionally been a challenge in
many LMIC settings, where the lack of parts and service are not always
readily available despite service contracts with manufacturers that can
represent several thousands of dollars. This has resulted in “equipment
graveyards” with non-functional imaging systems and other medical
equipment taking up precious space in often over-crowded hospitals. In
lieu of a traditional service contract with Hyperfine, UNITY provides
direct support for dedicated personnel to oversee the operation of the
UNITY scanners and provide direct phone or video-based support for
connectivity issues, software updates, and operation issues. For service
calls that cannot be diagnosed remotely or that require in-person

Fig. 4. A snapshot of images of the Hyperfine Swoop systems installed at many of the identified UNITY sites, including members of the study teams.
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support (e.g., more in-depth diagnostics, parts replacement), UNITY has
a dedicated service engineer who will travel between sites. In addition,
working with Hyperfine, in-depth training on scanner service has also
been provided, allowing sites to perform a higher degree of maintenance
than would be commonly possible.

2.3.3. IRB Considerations
As part of the importation process of research-dedicated scanners,

local ethics approval was required for each system. As with high-field
systems, this required reporting of known risks associated with ultra-
low-field MRI, including possible discomfort and claustrophobia, scan-
ner noise, energy deposition, and potential for peripheral nerve stimu-
lation (PNS). The open concept and head-only nature of the Hyperfine

Swoop helps to minimize participant discomfort associated with claus-
trophobia (in particular in smaller children and infants). Foam padding
and inflatable pads (e.g., PearlTec www.pearl-technology.ch), and im-
mobilizers (e.g., Med-Vac) are used to help position the infant and
child’s head in the system and minimize motion. Although the Hyperfine
system is relatively quiet compared to high-field scanners, headphones,
and ear plugs/protectors are used to reduce acoustic noise levels to less
than 40 dB, well below established FDA guidelines of 99 dB. Similarly,
whilst PNS and SAR (specific absorption rate, a measure of energy
deposition) limits are often encountered on higher field systems, they do
not pose a significant risk on the Swoop system because it lacks the
hardware to switch gradients quick enough to induce PNS, operates at a
radio frequency that carries little energy, and has hardware duty-cycle

Table 2
Overview of observational and clinical trials that are included in the UNITY network.

Study Location Cohort Name Study Type Cohort
Age
Range

Cohort Type Cohort
Size

Imaging
Timepoints

CEL, Lucknow, India India
Longitudinal
Cohort

Longitudinal
Observation Study

3 Months
- 5 Years

Healthy Community Sample 180 3, 9, 15, 21, 30, 60
Months

Makerere University& Kawempe
Referral Hospital, Uganda

PRIMES Longitudinal Study
following Nutritional
Supplementation

3–12
Months

RCT of low-birth infants with and without
early nutritional supplementation for 30 days
at 1 Month

80 3, 6, 12 Months

Makerere University& Kawempe
Referral Hospital, Uganda

Uganda
Longitudinal
Cohort

Longitudinal
Observation Study

Birth - 5
Years

Healthy Community Sample 180 3, 6, 12, 18, 24,
30, 36, 42, 48, 54,
and 60 Months

University of Cape Town, South
Africa

DoLPHIN 2 Plus+ Randomized Clinical
Drug Trial

2–4 Years
of Age

Observational follow up of HIV-exposed
uninfected children nested within the drug
trial and HIV-unexposed uninfected children
from the same high-risk community.

120 24–60 Months

University of Cape Town, South
Africa

Khula Longitudinal
Observation Study

Birth - 2
Years

Healthy Community Sample 300 3, 6, 12, 18, 24
Months

Kalafong Hospital (Pretoria) and
Chris Hani Baragwanath
Academic Hospital
(Johannesburg), South Africa

NESHIE Longitudinal
Observation Study

0–6
Months

Patients with moderate-severe NESHIE 200 0–6 H of life*, 3–6
Days OR 7–14
Days, and 3–6
Months

Blantyre, Malawi Khula Longitudinal
Observation Study

Birth - 2
Years

Healthy Community Sample 300 3, 6, 12, 18, 24
Months

Stellenbosch University, Cape
Town South Africa

BONO Longitudinal
Observation Study

Birth - 7
Years

Community Sample 2000 1, 2, 3, 4, 5, 6, 7
Years

Korle-Bu Teaching Hospital,
Ghana

Accra
Neuroimaging
Study

Longitudinal
Observation Study

0–12
Months

Community Sample 120 3, 6, 12 Months

CMC Vellore, India PRiSMA Longitudinal
Observation Study

0–12
Months

Drawn from larger study of mothers with and
without antenatal anemia

300 3, 6, 12 Months

Kintampo Health Research
Center, Ghana

PRiSMA Longitudinal
Observation Study

0–12
Months

Drawn from larger study of mothers with and
without antenatal anemia

300 3, 6, 12 Months

Kisumu, Kenya PRiSMA Longitudinal
Observation Study

0–12
Months

Drawn from larger study of mothers with and
without antenatal anemia

300 3, 6, 12 Months

Lusaka, Zambia PRiSMA / ZAPPS Longitudinal
Observation Study

0–12
Months

Drawn from larger study of mothers with and
without antenatal anemia

300 3, 6, 12 Months

AKU Hospital, Pakistan PRiSMA Longitudinal
Observation Study

0–12
Months

Drawn from larger study of mothers with and
without antenatal anemia

300 3, 6, 12 Months

AKU Hospital, Pakistan MINE Longitudinal
Observation Study

1–36
Months

General hospital & community sample 250 12, 24, 36 Months

Iccdr,b Bangladesh BEAN Cross-Sectional
Observation Study

Birth - 12
Years

A community cohort longitudinal EEG, NIRS,
and MRI study of neurodevelopment

210 3, 12, 24, 48 and
96 Months

Zomba Central Hospital, Zomba Birth Cohort Mixed Cross-Sectional
and Longitudinal
Cohort

Birth - 5
Years

Community sample. 5000 3, 12, 24, 36, 48,
60 Months

Zomba Central Hospital, Zomba REVAMP Longitudinal RCT Birth - 2
Years

RCT of maternal IV-Iron infusion for the
treatment of antenatal anemia

200 6, 12, 24 Months

Felege Hiwot Comprehensive
Specialized Hospital, Bahir
Dar, Ethiopia; Addis
Continental Institute of Public
Health

BCD (Bahirdar
Child
Development)

Prospective accelerated
longitudinal cohort

6
Months-5
Years

Healthy community sample 210 6, 12, 18, 24, 30,
36, 42, 48, 60
Months

Felege Hiwot Comprehensive
Specialized Hospital, Bahir
Dar, Ethiopia; Addis
Continental Institute of Public
Health

ENAT Infant
Follow up

Longitudinal Infant
follow up of Offspring
of ENAT study

12–24
Months

Randomized pragmatic effectiveness study of
maternal nutrition interventions (Balanced
Energy protein supplement, iodized salt, IFA)
and enhanced infection management
(genitourinary tract infection treatment and
deworming)

60 12, 24 Months
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limits that further limit SAR.
Although the Swoop system has a low magnetic field strength and a

small 5 Gauss line “footprint”, there remains potential for harm to in-
dividuals with metal prosthetics or implants (including extensive dental
work i.e., braces, aneurysm clips, cardiac pacemakers, or deep brain
stimulators, or insulin pumps). These individuals are not allowed near
the scanner (within the area circumscribed by the 5 Gauss line).

2.3.4. Site Preparation
Preceding and following the arrival of the Swoop imaging system

(Fig. 5), clinical partners were engaged with members of the import
team, Hyperfine, and experts in pediatric imaging to ensure an appro-
priate site for the device, identify and address challenges with local
connectivity, and arrange online and in-person training for the study
staff.

Preferred siting conditions for the Swoop system include an unob-
structed and relatively flat route from the delivery location to the
scanner storage area free of ramps greater than 5 degrees and doorways
narrower than 92 cm; a restricted access area to limit unintentional
exposure to the system’s magnetic field; and an electrical outlet with the
appropriate amperage and voltage.

Depending on local requirements, the imaging system was connected
either directly to the hospital Picture Achieving and Communication
System (PACS) or the internet for image transfer. Non-PACS-connected
systems utilized the Hyperfine cloud-based repository if internet con-
nectivity was sufficient, or was hard-line (ethernet) connected to a
provided Apple MacBook Pro laptop, with data curation performed
using the open-source Horos image viewer (https://horosproject.org/).
Whilst high-speed WiFi hubs and 5 G LTE cellular networks are
commonplace in HIC hospitals, universities, and clinical care settings,
this is not the case in many LMIC settings where cellular modems
providing internet via 3 G and 4 G networks are more typical and

require consideration for data transfer.

2.3.5. Site Training
In-person safety training and imaging protocol development (Fig. 6)

was provided initially by a team of pediatric imaging researchers from
either the Advanced Baby Imaging Lab at Hasbro Children’s Hospital,
Providence RI, or the University of Cape Town, Cape Town, South Af-
rica. Following the delivery of the scanner, the team would arrive to
assist with unboxing, set-up, and usage over a 3–5 day period. Training
encompassed general safety protocols, moving and positioning the
scanner via its built-in motor and drive wheel, and approaches to non-
sedated infant and pediatric neuroimaging, which include many of the
same techniques developed for pediatric imaging at 3 T (Dean et al.,
2014; Wedderburn et al., 2020). Particular focus was placed on how to
prepare infants and children (and their families) for scanning, ideal
positioning and alignment in the scanner, and quality checking the scans
in real-time. Training also covered the use of accessories, including
pediatric immobilizers (such as those from Pearltec and MedVac) and
foam cushions to restrict infant motion during the scan and to reduce
scanner noise. The training audience and imaging teams varied by LMIC
site and included, but not limited to, medical and clinical staff, radiology
staff, research staff, and IT and biomedical technical staff, where they
were available.

Safety concerns at some of the participating sites preclude partici-
pant travel from their homes to the image centers at night, precluding
the option of nighttime imaging. Specific strategies for daytime scanning
were, thus, developed and troubleshot at each site that was adapted to
their unique setting and context. As part of the training, the imaging
teams at each site participated in practical demonstrations before
scanning each other and, if research ethics were in place, infants.
Following each scanning session, a debriefing was held to identify and
propose changes to address challenges. A usability study involving user

Fig. 5. Pictures of Swoop arriving at a clinical cohort site. Following unloading of the scanner and accessory crate (a and b), the scanner crate is opened and
protectors removed (c). The scanner can then be driven out of the grant and into the facility (d, e, and f) to its desired location. Here final set up and unpacking is
performed (g) before being ready to image. From arrival to set up can take between 30 and 60 minutes depending on access and distance from delivery point to final
scan room.
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interviews with trainees was conducted to gain a deeper understanding
of MRI users’ needs, desires, and experiences; perceptions around
training and operation of the scanner in the LMIC sites; common issues
across research sites and recommendations for improvements; and best
practices for implementing MRI in LMIC settings.

The training was structured in such a way as to give ample time for
each member of the imaging team(s) to practice operating the scanner.
This helped to ensure that once training was concluded the team was
ready to scan independently and to train other members of their team in
the future. Training videos describing the essential steps in unpacking
the Hyperfine scanner, driving it, setting it up for scanning of research
subjects, cleaning, and quality control scanning were recorded and
shared between partners within the project. Additional training mate-
rials, including pictorial instruction sheet providing step-by-step in-
structions visually demonstrating the relevant procedures for cleaning,
moving, and scanning participants of different ages have also been made
and distributed across sites. This has helped facilitate rapid training of
new staff in the project and adherence to the protocols.

In addition to the in-person training performed at site initiation, on-
going training is also facilitated through KCL, Brown University, and the
University of Cape Town via regular check-ins and image-review ses-
sions on Collective Minds Radiology (discussed further later in this
overview). Site-visits are also organized yearly, and include members
from BMGF, KCL, Hyperfine, ISMRM, Collective Minds, FlyWheel, and
other organizations within the CSSs network.

2.4. MRI Physics, Sequence Development, Imaging Protocols, and Data
Acquisition Methods

Image quality and tissue contrast (i.e., signal-to-noise and contrast-
to-noise ratios, SNR and CNR) in MRI is inherently related to: 1. Mag-
netic field strength; 2. Tissue relaxation characteristics; 3. Imaging
sequence and acquisition parameters (i.e., echo time, repetition time,
etc.); 4. Image voxel size; and 5. Acquisition time. The reduction in field

strength from 1.5 T or 3 T to 0.064 T results in a significant loss of signal
and SNR decrease. Further, the T1 relaxation time is fundamentally
related to field strength, and is also significantly reduced at 64mT. The
factors yield visible quality and contrast differences between T1 and T2-
weighted images acquired at ultra low and high magnetic field, e.g.,
Fig. 7.

In addition to these considerations, the Hyperfine Swoop system was
originally developed for adult imaging in acute clinical care settings
with T1 and T2-weighted Fast Spin Echo (FSE), Fluid Attenuated Inver-
sion Recovery (FLAIR), and single-direction diffusion-weighted imaging
(with diffusion encoding along the anterior-posterior axis of the head)
sequences based on fast spin echo (FSE) acquisitions and optimized for
adult tissue characteristics and contrast. Using these, a basic standard-
ized “core” protocol has been developed that consists of volumetric T1
and T2 weighted imaging and quantitative T2 imaging (Tables 3, 4), but
with parameters optimized for the neonatal, infant, and pediatric brain.
This protocol is designed to provide basic anatomical and volumetric
measures to achieve the desired aims of the UNITY project and address
the research questions at the individual studies. Including child posi-
tioning and localizer scans, the protocol requires approximately
20–25 minutes.

Complementing these core acquisitions, a central component of the
UNITY project is the development of dedicated neonatal and pediatric-
optimized acquisition protocols, as well as more sensitive methods to
interrogate tissue microstructure. When or where possible we aim to
enhance the core protocol with MTR, MWI, diffusion, and other acqui-
sitions as they are developed. To this end, recent advancements have
been made concerning motion-tolerant and contrast-optimized neonatal
protocols (Cawley et al., 2023), quantitative T1 and T2 imaging methods
(qT1 and qT2, respectively), magnetization transfer ratio (MTR) imaging
(UBC), multicomponent relaxometry and myelin water imaging (MWI)
(Dvorak et al., 2023) (UBC), and diffusion sensor MRI (CUBRIC) Fig. 8.

Enabling these developments requires strong academic-industrial
collaboration and partnership between the P&E teams and the

Fig. 6. Pictures of In-person training beginning with a general safety orientation and introduction to the scanner (a), demonstrations and training on scanner driving
and positioning (b), initial protocol setup and scanner interface (c), practice scanning on each other (d) and, finally, positioning and scanning of infants and toddlers
(e and f).
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Hyperfine hardware engineering and sequence development teams. This
collaboration has facilitated the development of an open sequence
development interface for altering sequence parameters, and access to
the raw k-space imaging data for offline processing using state-of-the-art
image reconstruction tools (e.g., BART, Riesling, ISMRMRD). Given the
unique nature of the Hyperfine operating system, initial sequence
development for the project has been carried out via dedicated ‘sprints’

held at the Hyperfine Development center in Guilford, CT, with work
then performed back at individual home institutions. These develop-
ment sprints bring together a small group of academic MR physicists and
the Hyperfine sequence development team around a central focused
theme (e.g., MTR, diffusion tensor MR) for 1–2 weeks of in-depth work
and development, including extension and refinement of the sequence
development interface. Sprints occur approximately quarterly and are
preceded by in-depth discussions between the teams to identify the
need, propose two or three potential “best bet” avenues to address the
need, and lay the necessary groundwork such that the in-person time is
maximized. Needs are driven by the clinical partner sites and study fo-
cuses. For example, the strong emphasis on understanding the impact of
anemia and iron deficiency on early neurodevelopment has guided the
development of qT2, MTR, and MWI methods due to the potential impact
of anemia on neurodevelopment and myelination (Georgieff, 2008;
Mercer et al., 2022).

2.4.1. Core neonatal imaging protocol (< 1 Month)
Table 3

2.4.2. Core infant and child imaging protocol (>1 Month)
Table 4
Due to the inherent reduced signal (and, consequently, lower signal-

to-noise ratio (SNR)) at low magnetic field, LF-MRI images are often
acquired with anisotropic spatial resolution, increasing signal through
large through-plane resolutions (e.g., 1.5 mm×1.5 mm x 5 mm) whilst
maintaining reasonable acquisition times (e.g., 5 minutes).
Isotropically-resolved acquisitions are possible, but with increased
acquisition times that can also confer motion sensitivity, particularly in
older pediatric populations who find lying still for extended periods
(10–15 minutes) challenging. To achieve high-resolution structural im-
aging in children 3 months of age and older, we have adopted a super-
resolution reconstruction approach that produces isotropically-
resolved images from three anisotropic images acquired along three
orthogonal orientations (Deoni, O’Muircheartaigh et al., 2022), e.g.,
Fig. 7. AI-based approaches, such as SynthSR will also be used to
recreate “synthetic” high-resolution anatomical T1-weighted images
from lower-resolution T1 and/or T2 images (Iglesias et al., 2021, 2023).
While SynthSR has not yet been trained on data from infants and young
children, such work is ongoing. It is worth noting however, that positive
results have been obtained using SynthSR in pediatric populations,

Fig. 7. Example (top) 3 T T1-weighted and (bottom) 64mT T2-weighted anatomical images of a 9-year old male child. Owing to differences in T1 and T2 relaxation
parameters, T2-weighted imaging is preferred at low-field and is the primary image contrast of the UNITY common protocol.

Table 3
The main imaging protocol used across the CSSs for neonates and infants less
than 1 month of age.

FOV
(X x Y x Z)
cm3

Resolution
(X x Y x Z)
mm3

TE / TR / TI (ms) Time
(min:
sec)

T2 FSE (axial) 21
×18×18

2.0 ×2.0
×2.0

371 / 2000 / NA 14:38

T1 IR-FSE
(coronal)

22
×18×18

2.0 ×2.0
×2.0

7.6 / 1250 / 400 14:53

T1 IR-FSE
(coronal)

22
×18×18

2.0 ×2.0
×2.0

7.6 / 1250 / 500 14:53

T2 Mapping
(optional)

20
×18×22

1.7 ×1.7 ×5 41, 81, 122, 163,
204, 244, 285, 326,
366, 407 / 2000 / NA

9:22

Table 4
The main imaging protocol used across the CSSs for children older than 1 month
of age.

Image
Matrix
(X x Y x Z)

Resolution
(X x Y x Z)
mm3

TE / TR / TI (ms) Time
(min:
sec)

T2 FSE (axial) 112
×136×40

1.5 ×1.5 ×5 180 / 2000 / NA 2:15

T2 FSE
(coronal)

112
×44×124

1.5 ×5×1.5 220 / 2000 / NA 2:22

T2 FSE
(sagittal)

36
×136×124

5 ×1.5 ×1.5 225 / 2000 / NA 2:12

T1 IR-FSE
(axial)

112
×138×40

1.5 ×1.5 ×5 6.6 / 880 / 354 6:11

T2 Mapping
(optional)

20 ×18×22 1.7 ×1.7 ×5 41, 81, 122, 163,
204, 244, 285, 326,
366, 407 / 2000 /
NA

9:22
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lending confidence in its utility even without addition infant-focused
training (Cooper et al., 2024). Beyond approaches trained on
low-resolution data which was synthetically generated from high-field
tissue segmentation labels, we are also training custom neural net-
works on paired empirical ultra-low-field and high-field scans.

Unlike protocols used at higher field strengths, which focus on T1
weighted images as the main anatomical and structural measure (with
T2 weighted images occasionally included for children less than 1 year),
the structural imaging component of our LF-MRI protocol focuses on T2
weighted images across the age span (Fig. 7). We have found the T2-FSE
images provide consistently better tissue contrast across the age span
than the current T1-weighted inversion-prepared FSE images (Deoni
et al., 2021; Deoni, Medeiros et al., 2022). However, work is ongoing to
improve T1-weighted contrast through the use of more rapid

steady-state sequences (e.g., spoiled gradient or inversion-prepared
balanced free precession), which may also offer improved
signal-to-noise per unit scan time.

Adding additional information on tissue microstructure, quantitative
T2 mapping via a multi-echo FSE acquisition is also an integral
component of the core protocol. Tissue differences in T2 may be related
to changes in iron, lipid, and myelin content - providing insight into
potential changes in brain iron and myelination hypothesized to be
impacted by maternal antenatal anemia, malnutrition, and environ-
mental adversities. To provide improved sensitivity to myelination
changes, steady-state free-precession magnetization transfer (SSFP-MT)
may also be collected, though this approach is not part of the core
protocol.

Fig. 8. Representative quantitative maps and images from the advanced acquisition methods, including single and multiple component relaxometry for quantitative
T1, T2, and myelin water fraction imaging, magnetization transfer imaging, isotropic diffusion-weighted imaging, and diffusion tensor imaging and tractograhy of the
cortico-spinal tracts and splenium of the corpus callosum. These methods are intended to provide increased sensitivity to microstructure change associated with early
neurodevelopment and the impact of nutritional and other interventions.

F. Abate et al. Developmental Cognitive Neuroscience 69 (2024) 101397 

14 



2.4.3. Infant and pediatric data acquisition methods
Building on methods for non-sedated pediatric imaging developed at

Brown University and other child imaging centers (Dean et al., 2014;
Wedderburn et al., 2020), non-clinical imaging for UNITY is performed
during natural sleep without the aid of sedation. Given the diversity of
research sites, a single one-size-fits-all approach to pediatric imaging is
unlikely to succeed. Instead, each site has adapted its approaches after
the initial training sessions to maximize success given local constraints
and challenges. For example, whilst evening or night-time scanning is
generally preferred (particularly for infants 6–9 months of age through
to age 4–5 years), participant safety when returning home at night has
forced some sites to emphasize daytime scanning during naps, though
this often requires the family to return two or more times to complete the
imaging session successfully. Alternatively, some sites in clinical settings
may admit the mother, providing the family with a room so that scan-
ning can be performed at night without the need to immediately return
home after dark. Other differences between the sites, is the use of in-
dividual ‘private’ rooms in which the child can fall asleep before being
moved into the scanner (allowing multiple families and children to be
scanned in a single night) vs. having the child fall asleep in the scanner
(limiting the number of children per day or night).

The Malawi and Uganda sites, for example, have found strong suc-
cess in scanning children up to 2 years of age during the day by bringing
in multiple families, allowing them to fall asleep in different areas of the
center or hospital and then moving them to the scanner. If the child
wakes, the mother is encouraged to feed the child and stay until they fall
asleep. In contrast, all scanning at Aga Khan University is done during
the day with a single mother-child at a time, and often the child is
scanned awake.

Depending on a child’s age, a custom-built “baby tray” or vacuum
immobilizer (Fig. 9) can be used to help restrain the infant and position
them within the scanner. Memory foam and/or inflatable cushions are
further used to help secure the infant and reduce head motion in the
scanner. For children older than 2 years, imaging is challenged by their
reduced nap time. This can be countered by allowing the child to watch a
favorite movie. Unlike larger 1.5 T or 3 T scanners, which have space
within the bore and head coil for a mirror system to watch a projected
movie, space within the Swoop scanner is tightly constrained. To
address this, mini projectors (e.g., FATORK Mini Projector, or more
expensive CineBeam Ultra Short Throw LED Home Theater) mounted to
the base of the scanner can be used to project a video onto the inner
surface of the scanner bore, allowing it to be viewed by the child. VR
headsets, like the Oculus or Apple Vision may also be viable alternatives
but have not yet been tested. Sound is played out loud (rather than
through headphones) due to space constraints within the head coil itself
as well as the reduced acoustic noise of the scanner.

2.4.4. Data Harmonization and the UNITY Phantom
To address known longitudinal intra and inter-site challenges to

robust data integration, a custom UNITY phantom was designed by
CaliberMRI (Boulder, CO) for use across the project sites. To ensure
reliable and consistent positioning of the phantom in the scanner across
sites, a physical cradle was also developed that allows unambiguous
positioning and leveling of the phantom in the scanner head coil. The
UNITY Phantom (CaliberMRI Model 137) (Fig. 10) was inspired by the
“NIST/ISMRM” phantom (Stupic et al., 2021) and measures 170 mm in
diameter to fit the unique head coil of the Hyperfine Swoop scanner.

The phantom includes 14 T1, 14 T2, and 14x diffusion calibration
solution mimics that span the range of healthy to diseased human tissues
in the respective parameter space. Approximate ranges of relaxation
values at 3 T are ~20–1900 ms for T1, ~10–550 ms for T2, and apparent
diffusion coefficient (ADC) of ~400–2000 mm2/s. While “ground truth”
measurements of the relaxation times at 64mT are not yet available, the
mimics have known concentrations, have high stability, and are SI-
traceable to NIST at 3 T. For this work, absolute quantitative accuracy
is not of paramount importance. Rather the initial intention is to use
these mimics to measure potential drifts in longitudinal and cross-site
measurements. To assess geometric distortion and allow calibration of
volume measures, the phantom includes a 3-dimensional array of 15
fiducial markers, a slice profile wedge, and a resolution insert.

Given the sensitivity of relaxometry measures to temperature (Bot-
tomley et al., 1984, 1987), the UNITY phantom includes an MR-readable
thermometer, with a readable range of 15–24◦C (Keenan et al., 2020).
However, given that many of the sites in UNTY have seasonal temper-
atures that exceed 24◦C and lack air conditioning or climate control, a
liquid crystal strip thermometer with a temperature range of 16–36◦C
was also incorporated into the design.

Quality Assurance Protocol. The QA protocol consists of a set of five
scans, a total duration of 15 min. A dedicated sequence is used to assess
the phantom temperature. Two T2w axial scans are acquired to assess
signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and geometric
distortions. Additional T2w scans in coronal and sagittal orientation are
acquired to complement the assessment of geometric distortions. See
Table 5 for a summary of scan parameters.

The QA protocol may be performed daily, though the frequency can
be adjusted (more or less frequently) depending on factors such as
environmental conditions, unique patient concerns, and scanner oper-
ations (including software and hardware updates, and moving loca-
tions). The QA scans are primarily evaluated via the cloud-based qCal-
MR software suite, a product of CaliberMRI, for detailed, repeatable
configuration, operation, and quantitative statistical confirmation. A
detailed description of the quantitative QA assessment is outside the
scope of this paper and will be described in a separate publication.

Fig. 9. Images of child participants in Hyperfine Swoop ranging in age from 1 to 3 months (a, b) using a baby tray positioning insert and foam head pads, 1 year (c)
using a blue Med-Vac Immobilizer and head pads, and 5 years (d) using just ear and head pads to minimize motion.
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2.5. Data governance, sharing, and analysis

2.5.1. Data governance and flow
As a guiding principle, UNITY follows a model of global open access

consistent with FAIR (Findable, Accessible, Interoperable, Reusable)
practices for sharing data, analytic tools, processing pipelines, and
publications. This implies that (a) knowledge, information, and data
gained from the project be promptly and broadly disseminated and (b)
the methods and tools be made available and accessible to all. Fig. 11
visually illustrates the data flow, including low-field MRI data and
relevant contextual family and child health data (e.g., child age, birth
date, biological sex - detailed below), from each site to central re-
positories for storage, harmonized analyses, sharing, and community
engagement.

Given differences in institution and country policies with respect to
data security and sharing, the specific flow of MRI data may take one of
three different routes: 1. Uploaded from scanner to Hyperfine Cloud - an
Internet cloud-based PACs server provided by Hyperfine, with data then
downloaded to a local laptop; 2. Directly from the scanner to a local
laptop (where internet connectivity is not available or institutional
policies don’t allow the use of Hyperfine Cloud; or 3. From the scanner

to an institutional PACS and then to a local laptop. From the laptop, data
is then uploaded to Flywheel and (optionally) Collective Minds radi-
ology for analysis and community feedback. Each site is responsible for
uploading all data to Flywheel and performing an initial QC evaluation
of the data.

An MRI data core, based at King’s College, London, provides support
to the individual sites and acts as a liaison between the sites and
Flywheel. This group also assists with sharing permissions, oversees data
access and contributor agreements, and provides a secondary QC check
of data. Finally, this group also assists with the development, testing,
and deployment of image processing algorithms.

2.5.2. Data storage, curation, and sharing
Flywheel provides a common and secure data storage, curation, and

analysis platform. Here, harmonized analysis pipelines can be devel-
oped, tested, and run across all data, with appropriate tracking of data
provenance, without the need to install additional local hardware
infrastructure and software. Most imaging centers and labs traditionally
adopt common analysis packages (e.g., SPM (Ashburner and Friston,
2000), FreeSurfer (Fischl, 2012), FSL (Jenkinson et al., 2012), AFNI
(Cox, 1996), or imageJ (Schneider, Rasband, and Eliceiri, 2012),
amongst others) that include both analysis methods for tissue segmen-
tation, labeling, registration, and regression as well as image viewers, or
combine different open source analysis tools and image viewers, such as
from the Neuroimaging tools & Resources Collaboratory (NITRC).
However, these tools often carry a steep learning curve for new users and
require additional data management and computation resources to store
data and ensure the same version of tools and processing parameters are
used across studies. Flywheel offers a streamlined and all-in-one
approach to data storage, viewing, and analysis via harmonized
containerized algorithms (aka ‘gears’), removing much of the data
management overhead and allowing novice sites to engage in data
analysis rapidly. Researchers can access the data generated from the
Hyperfine scanners and process algorithms on the platform securely
with role-based access controls.

Instances of FlyWheel have been deployed using public cloud ser-
vices in the US and India to address the data-sharing restrictions in India.
For sites that were restricted by their IRB from open data sharing across

Fig. 10. The CaliberMRI UNITY phantom (a) outside and (b) inside the scanner. The phantom includes 3 sets of T1, T2, and ADC mimics arranged in parallel trays
within the phantom (c) that provide differing contrast on T1 and T2-weighted and quantitative images (d). In addition, the phantom includes a spatial resolution grid,
and internal and external temperature strips (a). A positioning cradle allows the phantom to be unambiguously positioned in the scanner (b).

Table 5
Short QA protocol used to assess SNR and geometric distortions.

Parameter Temperature
scan

T2w axial T2w sag T2w cor

Base sequence FISP FSE FSE FSE
Resolution

(mm3)
3×3x5 mm 1.6×1.6×5 1.6×1.6×5 1.6×1.6×5

TE/TR (ms) 4.11/11.53 194.8/
2000

238.4/
2000

231.6/
2000

Duration (s) 61.3 156.6 130.7 138.6
ETL N/A 80 80 80
ESP N/A 4.9 6.0 5.8
TI N/A N/A N/A N/A

Abbreviations: ESP - Echo spacing, ETL – Echo train length, TE – Echo time, TR –
Repetition time, TI – Inversion time, N/A – Not applicable. *For the T2-mapping
sequence, ESP and TE is given as the same value
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the network, FlyWheel allows distributed processing (i.e., federated
learning) via a multi-tenant SaaS cloud platform, allowing machine
learning models to be trained across all datasets without providing in-
dividual access to raw data.

Complementing Flywheel, Collective Minds Radiology is a cloud-
based platform for crowd-sourced radiology. Investigators with ques-
tions regarding image quality, artifacts, and possible incidental findings
or presence of pathology can upload de-identified data to the UNITY
group on Collective Minds and solicit feedback and opinions from other
members of the group. This resource also provides a platform for
ongoing training on data collection and harmonization, artifact identi-
fication, and other acquisition-related aspects via “image review ses-
sions” during which sites can review recently acquired data in an effort
to ensure data consistency and quality is met even with changing
personnel or protocols.

Data sharing is an expectation for all BMGF funded projects and
partners, and UNITY is no exception. However, data sharing across the
UNITY sites must also comply with local and national regulations e.g,
Health Insurance Portability and Accountability Act (HIPPA, North
America), General Data Protection Regulation (GDPR, UK and European
Union), and Digital Personal Data Protection Act (DPDPA, India).
Currently, access to raw data acquired at all sites, and with appropriate
ethical review board approval, is facilitated via data contributor and
access agreements (DCAs and DAAs, respectively) that are coordinated
via KCL with the data available on FlyWheel. Data acquired in India is
the lone exception to this due to national regulations on data sharing,
which also requires the use of a FlyWheel instance hosted in India. For
these sites, summary statistics may be shared. For machine learning
model building, the federated learning capabilities of FlyWheel will
allow all sites to integrate all data even without physical access to the
raw data. It is expected that data will be more broadly accessible via
FlyWheel exchange and, where possible, other common repositories,
such as the NIH Data Archive.

2.5.3. Image processing to achieve the goals of UNITY
As outcomes, UNITY aims to: 1. Characterize patterns of brain

growth spanning birth through early childhood (i.e., birth to 5 years of
age) across the participating LMIC and HIC centers, and to identify po-
tential alterations in growth associated with birth injury, maternal and
child nutritional (e.g., anemia) status, and other maternal and child
health and environmental factors; 2. Explore relationships between
neuroimaging measures with concurrent and later cognitive outcome
metrics as well as physical growth; and 3. Identify global vs. regionally-

specific factors that shape brain growth patterns and neurocognitive
outcomes.

To achieve these three primary aims, we will employ adapted or
custom-developed image processing tools to the acquired LF-MRI data.
As a start, country-specific and global whole-brain templates will be
constructed from the high-resolution super-resolution (SR)-recon-
structed T2 (and where possible, T1 images) using the antsMultivar-
iateTemplateConstruction2.sh tool that is part of the Advanced
Normalization Tools (Avants et al., 2011). Age-specific templates will be
calculated corresponding to 3, 6, 9, 12, 18, 24, 36, 48, and 60 months (or
appropriate age subsets depending on data collection) using a minimum
of 15 male and 15 female children at each time point within each
country (i.e., country–specific templates). From these, a global brain
template will be calculated from the set of country-specific templates
(Fig. 12).

2.5.4. Developing custom processing tools
The majority of image processing tools available for MRI have been

developed for use with high-field T1-weighted images of the adult brain.
Direct translation of these algorithms to pediatric cases, and particularly
to early development, are generally impaired by differences in the
morphology of the developing brain that changes rapidly over the first
year of life and imaging characteristics such as the poor gray/white
matter differentiation in the developing brain (Dubois et al., 2021).
These challenges impact the ability of existing algorithms to accurately
segment pediatric brain structures even on high-spatial-resolution and
high signal-to-noise (SNR) images acquired on 3 T MRI systems. Seg-
mentation inaccuracies are magnified in the lower fidelity (i.e., resolu-
tion and SNR) acquired on low-field strength systems such as the
Hyperfine Swoop scanner. As such, commonly accepted toolkits for skull
stripping, tissue segmentation, and registration do not work or are not
optimized for low-field pediatric images that have significantly different
contrast, quality, and resolution characteristics (for example, Fig. 13).

To address this problem several image segmentation and skull
stripping strategies will be tested (illustrated in Fig. 14) as follows:

2.5.4.1. Data curation / quality control. Data from multiple clinical
sources will be evaluated for completeness, consistency with imaging
protocol, motion and imaging artifacts,

2.5.4.2. Ground truth labeling / segmentation. Semi-automated labeling
of the training data is first performed to be subsequently fed into the
automated deep learning segmentation algorithms. Online segmentation

Fig. 11. Data Flow. MRI and health history information collected at each site may be spread across different devices, including Hyperfine Cloud for Hyperfine MRI
data (if institutionally allowed), PACS (if available) or on a local laptop. From here, raw MRI and contextual data are uploaded to Flywheel for analysis and sharing.
MRI data of questionable quality or with potential artifacts or incidental findings can also be shared with Collective Minds for community feedback. Cohort-specific
and UNITY-wide analyses performed on Flywheel then form the basis of scientific reports and publications.
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tools, such as the iBEAT (Dai et al., 2013) and SynthSeg (Billot et al.,
2023), are used for initial segmentation, followed by manual editing to
build these training sets. Initial labels of interest will include the cortex
and hippocampus, as well as brain vs. non-brain tissues (skull stripping).

2.5.4.3. Existing method comparison and new algorithm development. We
are implementing convolutional neural network-based architectures for
the segmentation of cortical and subcortical structures and for skull
stripping. These architectures recognize both local and global features
and are popular for segmentation tasks (Zhang et al., 2021). For

Fig. 12. (Bottom to top) Creation of the age- and country-specific, and global templates from data generated at each of the clinical cohort sites. At least 15 male and
female datasets at each age will be combined to generate age-specific templates within each country. These age-specific templates will then be used to generate a
country-specific template. Finally, country-specific templates will be combined into the global ‘world’ template.

Fig. 13. Examples of segmentations on low-field pediatric data with current segmentation tools. (A) Hippocampal segmentation using SynthSeg. (B) Segmentation of
the cortex with iBeat. (C) Skull stripping performed using SynthStrip. On each image, white arrows point to examples of regions that were given the wrong tis-
sue label.

Fig. 14. Flowchart encompassing our overall strategy for the implementation of segmentation tools for the Hyperfine Swoop scanner.
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instance, we are experimenting with architectures such as UNet (Ron-
neberger et al., 2015), VNet (O. C¸ ic¸ek et al., 2016), SegResNet (Mil-
letari et al., 2018), SegResNetVAE (Isensee et al., 2021), nnUNet
(Hatamizadeh et al., 2021)and SwinUNetR (Bishop, 1995), to auto-
matically segment the left and right hippocampus structures in 3D MRI.
Each network offers distinct advantages in capturing essential local,
global, and contextual information from the images. The performance
will be measured and summarized by the Dice coefficients, Hausdorff
distance and relative volume errors computed between automatically
segmented structures on low-field MRI and the paired manually
segmented gold standard from high-field MRI.

2.5.4.4. Data challenges. While developing in-house methods to provide
improved segmentations over the current state-of-the-art for low-field
pediatric images, a public challenge will also be organized for each
segmentation task to crowd-source algorithm development. The Medical
Image Computing and Computer Aided Intervention (MICCAI 2024)
conference will take place for the first time in 2024 on the African
continent in Marrakesh, Morocco. It will provide an ideal venue for this
challenge, which will be organized in partnership with the conference
organizing committee. MRI data and ground truth segmentation will be
shared publicly for algorithm training with an independent testing set
that will be private and used for algorithm benchmarking.

2.5.4.5. Algorithm benchmarking and ensemble model development. To
advance the predictive power of the in-house method as well as the
models collected from the challenge, ensemble learning methods (Sagi
and Rokach, 2018) will be employed to combine various model pre-
dictions. A comparison will be conducted to evaluate the performance of
various ensemble methods for different age groups and genders. The
best method will be used to perform the output fusion of all the models.

2.5.4.6. Image enhancement. Each deep learning segmentation tool will
be validated with and without image enhancement, e.g., super-
resolution of the original low-field image, multi-sequence analysis, in-
homogeneity correction, etc. We will train dedicated neural networks
based on some of the above convolutional neural-network-based archi-
tectures to learn the “image quality transfer” mapping from ultra-low-
field to high-field data, which can subsequently be applied to super-
resolve unseen ultra-low-field scans. We are exploring both the re-
training of existing super-resolution methods (e.g. SynthSR) on pediat-
ric scans, as well as the development of dedicated super-resolution
models, such as 3D UNets trained on paired empirical ultra-low-field
and high-field data. Additional architectures are relevant for super-
resolution, including the CycleGAN (Zhu 2017), which can potentially
be trained on unpaired ultra-low-field and high-field scans from
different populations. We plan to compare the performance of our seg-
mentation tools on original versus super-resolved images, and we expect
the latter to yield significantly improved measures over the former. In
turn, super-resolution performance is commonly quantified by
comparing tissue segmentations and volumes from super-resolved ultra-
low-field scans to corresponding high-field MRI; as a result, advances in
dedicated tissue segmentation methods can serve to improve the per-
formance of custom super-resolution approaches.

2.5.5. Assessing other domains of child health and their environment
Alongside LF-MRI measures of gross brain anatomy and structure (i.

e., total and regional brain volumes), and where and when possible more
sensitive measures of tissue microstructure (e.g., quantitative T1 and T2,
magnetization transfer ratio, myelin water fraction, and diffusion),
multiple domains of contextual child health and family environment
will be examined. While specific measures and biological samples (and
their time points of collection) will vary by cohort, these will include
child anthropometry (length/height, weight, head circumference, upper
arm circumference), age-appropriate neurocognitive measures

(including the Global Scale of Early Development, GSED, BSID-III or
BSID-IV, WPPSI-3, as well as assessments of executive functioning,
school readiness, and pre-academic skills, i.e., numeracy and literacy),
anemia (via blood hemoglobin, Hb) and/or iron deficiency status, and
other general assessments of child health and well-being. Where
possible, biosamples including dried blood spots, saliva, hair cortisol,
fecal microbiome, and nail clippings will be collected. Whilst individual
sites will use these samples for cohort-specific investigations (e.g.,
genotyping, HIV status, microbiome diversity, specific nutrient de-
ficiencies, and drug exposure), common analyses will include the eval-
uation of anemia (Hb) status.

The use of psychometric tools, such as the BSID, WPPSI, the NIH
Toolbox, and others, in LMIC settings is often challenged by the lack of
country-specific translations and populations norms. In most instances,
whilst these tools have previously been used widely across the UNITY
countries in past studies of child development or of various health in-
terventions (Cromwell et al., 2014; Hanlon et al., 2016; Pendergast
et al., 2018; Rasheed et al., 2018), none have been re-normed for the
LMIC populations. Thus, comparison of scores across populations is
difficult and will be avoided in UNITY. Rather, these tools will be used in
a cohort-specific basis to examine developmental outcomes following
health interventions where there is a corresponding control group (e.g.,
the PRIMES, PRISMA, NESHIE, and REVAMP trials) (Semrud-Clikeman
et al., 2017).

Retrospective health data (e.g., records of birth weight, gestation
duration, etc.) is also challenging in many LMIC settings due to the lack
of comprehensive electronic health records. For birth data. all studies in
UNITY are pregnancy cohorts, allowing this information to be directly
assessed by the study team.

Given the potential role of social equity and gender discrimination
on child development (Vlassoff, 2007), a broad range of individual and
population measures will be examined. On an individual level, maternal
autonomy, decision-making, mental health (e.g., depression), and
inter-partner violence will be assessed. In addition, local (to the site)
male-female differences in education and expected years of schooling
(Local Burden of Disease Educational Attainment, 2020), new-born care
seeking (Willis et al., 2009), and workforce participation and unpaid
labor. These measures will be directly assessed in study participants,
with additional local information derived where possible from existing
databases, such as the Institute for Health Metrics and Evaluation
(https://www.healthdata.org/).

Finally, broad and location-appropriate factors related to socioeco-
nomic status will also be measured, including, for example, income-to-
needs, social standing, housing type and ownership status, cooking
fuel type, availability of electricity/lighting/cooling fans, and posses-
sion of a cellular phone.

An overview of common assessments is provided in Supplemental
Table 1, which includes major domains assessed and assessment
instruments.

2.6. Clinical and research training and capacity building

Across many LMIC settings, including many of the clinical cohort
sites in UNITY, neuroimaging expertise (in both clinical and research
capacities) is nascent. Outside of major tertiary or referral hospitals,
access to MRI systems is severely constrained as are the opportunities for
training, which feeds a larger human capital challenge with few trained
radiologists, radiology technicians, nurses, and other support staff
needed to maintain, operate, and read diagnostic images. In many
countries, only a handful of radiologists may support a total population
of 10–20 million. Beyond healthcare service, this can present challenges
in research capacity with respect to ethical IRB considerations for inci-
dental findings and follow-up care. However, given the lack of health-
care access to MRI, it is unsurprising that MRI research is similarly
scarce.

Two of the five pillars of UNITY (Fig. 1) deal specifically with
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capacity building on both clinical and research levels. Whilst the goal of
UNITY is not to improve access per se, the provision of ultra-low-field
strength scanners and the large, assembled network of clinical and ac-
ademic health researchers offer a compelling opportunity to increase
knowledge and reduce barriers to MRI across Sub-Saharan Africa and
South Asia.

2.6.1. Community support
For many of the centers involved in UNITY, there is no formal

radiology department and/or radiologist available to perform clinical
interpretation of the research scans, such as might be needed to identify
or confirm incidental findings. This is further amplified by the general
lack of MRI-trained radiologists in many LMICs and regions and,
particularly, those familiar with the unique image quality and tissue
contrasts provided by low and ultra-low-field MRI. To assist with inci-
dental reporting, as well as general image interpretation and grading,
UNITY has aimed to establish a community approach through the use of
CollectiveMinds Radiology (www.cmrad.com). CollectiveMinds is an
internet cloud-based platform that provides a secure and protected space
for UNITY members to upload anonymized images with suspected
quality issues, artifacts, or potential clinical abnormalities and elicit
community feedback. In this way, clinical sites with greater experience
(e.g., Aga Khan University, University of Cape Town, Pretoria Univer-
sity, KCL, University of Bonn) can assist those sites with lesser experi-
ence. Through this interaction, UNITY aims to help spread and improve
low-field MRI expertise across all sites.

2.6.2. MRI physics education
In addition to building experience with grading low-field images,

there is also a focus on improving knowledge of the underlying MRI
physics and image analysis principles to expand the research and edu-
cation capacity across sites. These aims are facilitated through part-
nership with the International Society for Magnetic Resonance in
Medicine (ISMRM) and online lectures and tutorials provided by leading
experts and educators from the MRI community. This monthly series
encompasses the basic principles of signal generation and localization,
contrast mechanisms, acquisition protocols, reconstruction, and image
artifacts.

2.6.3. Image analysis training and workshops
Alongside the basic principles of MRI, methods for image analysis are

also covered through a series of individual 1:1 and group tutorials. The
use of Flywheel further helps to reduce barriers to image processing
across sites, allowing UNITY members to first employ and experiment
with developed processing tools (gears) before expanding their expertise
through the development of new Flywheel “gears” and standalone
analysis tools.

3. Discussion

The first 1000 days of a child’s life is an important early window of
neurodevelopment during which lifelong patterns of health and cogni-
tive development are established. The human infant brain is unique in its
prolonged period of maturation (Dehaene-Lambertz and Spelke, 2015;
Gao et al., 2015; Huang et al., 2015). While this protracted timeline
enables plasticity and refinement of the infant brain to evolving envi-
ronmental factors, it also places developing neural systems at risk to
adverse conditions, including suboptimal maternal health, poor preg-
nancy outcomes (e.g., growth restriction, preterm delivery), malnutri-
tion, infection and disease, and other forms of social and environmental
adversity (Bick and Nelson, 2017). Given this sensitivity and plasticity, it
is hypothesized that maternal and child health interventions, aimed at
improving child neurodevelopmental outcomes, will have the greatest
impact and efficacy if delivered during this early developmental period
(Cusick and Georgieff, 2016; Vir and Suri, 2023). The impact of these
interventions may be greatest felt in LMICs, where poor maternal and

child health conditions, malnutrition, and other environmental adver-
sities are of high prevalence and severity.

As part of the environmental conditions experienced by infants and
young children, social inequality and gender discrimination remains a
sociocultural norm across many parts of the world, with severe conse-
quences for female children in certain communities. In parts of India, for
example, preference for a male child, female feticide, and higher rates of
infant mortality, malnutrition, and physical growth faltering among
girls have been reported (Willis, Kumar et al., 2009, Marphatia, Cole
et al., 2016). In many parts of the world, female infants and young
women often receive differential access to food, healthcare, education,
and later employment opportunities. Here, adversity and inequality may
not only contribute to poor brain development but is also an outcome of
it, perpetuating a vicious intergenerational cycle. The impact of these
inequalities on the developing male and female brain, layered on top of
pre-existing general socioeconomic and environmental adversities is
unknown.

A longstanding challenge in global health studies, however, has been
the accurate assessment of the neurodevelopmental implications of
these interventions, particularly on the fetal and early infant brain when
cognitive assessments may be difficult or impossible to perform. Given
that neuroimaging may be more sensitive to the subtle changes in brain
structure and function resulting from improved antenatal care, maternal
or child nutritional supplementation, or other intervention, and offers
more stable predictive ability (particularly in infants and younger chil-
dren), its complementary use with clinical assessment measures has the
potential to help improve early identification of efficacious in-
terventions and refine their implementation across diverse geographies
and populations.

The UNITY project aims to contribute to our understanding of how
neurodevelopmental is impacted by the myriad of pre and post-natal
health, environment, and social equity factors through the character-
ization of the patterns of structural brain development across multiple
high, middle, and low-income settings and populations; and identify
early and predictive imaging biomarkers of neurodevelopmental
outcome (e.g., later childhood school readiness, language, and
numeracy skills, and socioemotional processing). Beyond these direct
aims, the project will further contribute to the emerging state-of-the-art
of low and ultra-low field MRI (<100mT) and help build access and
expand capacity (skills, training, and personnel) for MRI throughout
parts of sub-Saharan Africa and south Asia.

UNITY partners aim to create a unique neuroimaging resource.
Namely, a harmonized dataset of brain morphometry and microstruc-
ture (assessed via volumetric structural imaging, tissue relaxometry, and
magnetization transfer imaging) acquired on the same scanner platform
(Hyperfine Swoop) from multiple child populations and settings where
current MRI access is sparse and past MRI neuroimaging studies are few
or non-existent. These data will be paired with concurrent assessments
of child cognitive development (principally the GSED (McCray et al.,
2023), but complemented as necessary by traditional tools such as the
BSID (Milne, McDonald, and Comino, 2012), the Mullen Scales of Early
Learning (E.M. 1995), and the Malawi Developmental Assessment Tool
(Gladstone et al., 2010)), as well as rich demographic, socioeconomic,
prenatal health, birth history, and home environment information. Data
collection includes cohorts of healthy children as well as targeted health
risks and conditions, including preterm birth, maternal anemia, and
neonatal hypoxic-ischemic encephalopathy, in diverse geographic, cul-
tural, and social environments and contexts. This rich and varied dataset
will provide novel insight into potential factors that shape neuro-
development, and how these factors may vary in importance and impact
by region, country, and continent. The needs of the individual cohorts
provide the impetus and priority for the neuroimaging methods. This
unique collaboration between the clinical, physics, and engineering
groups is meant to accelerate the development of important methods
custom-tailored to the relevant age group and cohort.

In addition to scientific endpoints, The UNITY network will help
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build research and clinical capacity across sites where MRI research
and/or clinical usage is nascent. Here the aim is to build local, regional,
and national collaborations with links to international societies such
that growth and capacity building occur from the ground up. While
UNITY will not overcome all obstacles that prevent the wide and ubiq-
uitous adoption of MRI - for example, the lack of equipment mainte-
nance support and service that has often led to “equipment graveyards”
(De Maria et al., 2022), our connected network with support from major
academic societies can lend pressure to major equipment vendors and
facilitate local problem solving.

The UNITY project is based on open science, with the goal of rapid
sharing of data with the broad global health community. However, it
must be recognized that some countries consider neuroimaging data in
the same manner as human biosamples, with analogous regulatory
concerns and restrictions. Further, unrestricted access is challenging for
sensitive pediatric cohorts who have not given their consent for data
sharing. Thus, the network has adopted a “share what you can, when
you can” approach in line with funder (the Bill & Melinda Gates Foun-
dation) principles and policies.

4. Conclusion

The UNITY project will provide new information on the patterns of
neurodevelopment, their potential differences, and the factors that
shape them across a unique set of child populations from varied low- and
middle-income settings while driving development access to low and
ultra-low magnetic field MRI.

Role of the funding source

Funding for the various aspects and individual study cohorts that
comprise UNITY has been provided by the Bill & Melinda Gates Foun-
dation, The Wellcome Trust, Wellcome LEAP, and the Maudsley NHS
Foundation Trust. These funders played no role in the direct adminis-
tration, research activities, or the presentation of the results. BMGF did
develop the overall neuroimaging strategy into which UNITY fits and, as
such, helped shape individual project goals, organize and facilitate
communication across and between sites and hubs, and host workshops
and meetings for the UNITY network. S Deoni from the Bill & Melinda
Gates Foundation led the writing effort of this paper on behalf of the
larger UNITY network.
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